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Abstract
In this paper, the energy eigenvalues and the corresponding spinors of the Dirac
particles are obtained and the pseudospin symmetric solution of the attractive
scalar and repulsive vector Morse potential for any spin–orbit quantum number
κ is provided by using the Pekeris approximation within the framework of the
asymptotic iteration method.

PACS numbers: 03.65.Fd, 03.65.Ge, 34.20.Cf, 34.20.Gj

1. Introduction

The pseudospin symmetry (PSS) with the nuclear shell model was introduced many years
ago [1, 2], and it has been widely used to explain a number of phenomena in nuclear
physics and related areas (see [3] and reference therein). It has been shown that the quasi-
degenerate pseudospin doublets in nuclei arise from the near equality of the magnitude of the
attractive scalar and repulsive vector potentials, i.e., VS ∼ VV [3, 4]. PSS is seen as a quasi-
degeneracy of the doublet single-particle states and characterized with the quantum numbers
(n, l, j = l + 1/2) and (n − 1, l + 2, j = l + 3/2), where n, l and j are the single-particle
radial, orbital and total angular momentum quantum numbers, respectively. The total angular
momentum is written by a pseudo-angular momentum �̃ = � + 1 and a pseudospin s̃ = 1/2 as
j = �̃ + s̃ [5]. Pseudospin symmetry and spin symmetry [4, 5] occur for �(r) = C = const
and � = C = const in the Dirac equation, respectively. Pseudospin and spin symmetry have
been observed in several nuclei for a few potentials such as the harmonic oscillator [6–10],
Morse [11, 12] and Wood–Saxon [13, 14].

Recently, for any spin–orbit quantum number κ , the quasi-analytical solution of the Dirac
equation has been presented for the Morse potential [15] with pseudospin symmetry using the
Nifikorov–Uvarov [11] and the exact quantization rule methods [12]. We should point out
here, however, that the conclusions of both papers regarding the bound state solutions of the
exact pseudospin symmetry Morse potential for the Dirac particles are inconsistent.
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Therefore, in this paper, our aim is to solve the Morse potential by using a different
and more practical method called the asymptotic iteration method (AIM) [16] within the
Pekeris approximation and to obtain the relativistic bound state energy eigenvalues and the
corresponding Dirac spinors within the pseudospin symmetry concept. In the next section, we
present the AIM with all necessary formulae to perform our calculations. In section 3.1, a brief
introduction to the usual Dirac formalism are presented. In section 3.2, we present the Pekeris
approximation, and in section 3.3 we investigate the relativistic bound state eigenvalues and
the corresponding spinors of Dirac particles for κ �= 0 with the pseudospin symmetric case
�(r) = C = const. Finally, section 4 is devoted to our summary and conclusion.

2. The asymptotic iteration method

The AIM [16] is proposed to solve the second-order differential equations of the form

y ′′
n(x) = λ0(x)y ′

n(x) + s0(x)yn(x), (1)

where λ0(x) �= 0 and the prime denotes the derivative with respect to x. The variables,
s0(x) and λ0(x), are sufficiently differentiable. To find a general solution to this equation, we
differentiate equation (1) with respect to x; we find

y ′′′
n (x) = λ1(x)y ′

n(x) + s1(x)yn(x), (2)

where

λ1(x) = λ′
0(x) + s0(x) + λ2

0(x),

s1(x) = s ′
0(x) + s0(x)λ0(x).

(3)

Similarly, the second derivative of equation (1) yields

y(4)
n (x) = λ2(x)y ′

n(x) + s2(x)yn(x), (4)

where

λ2(x) = λ′
1(x) + s1(x) + λ0(x)λ1(x),

s2(x) = s ′
1(x) + s0(x)λ1(x).

(5)

Equation (1) can be easily iterated up to the (k + 1)th and (k + 2)th derivatives, k = 1, 2, 3, . . ..
Therefore, we have

y(k+1)
n (x) = λk−1(x)y ′

n(x) + sk−1(x)yn(x),

y(k+2)
n (x) = λk(x)y ′

n(x) + sk(x)yn(x),
(6)

where

λk(x) = λ′
k−1(x) + sk−1(x) + λ0(x)λk−1(x),

sk(x) = s ′
k−1(x) + s0(x)λk−1(x),

(7)

which are called the recurrence relations. From the ratio of the (k + 2)th and (k + 1)th
derivatives, we have

d

dx
ln

[
y(k+1)

n (x)
] = y(k+2)

n (x)

y
(k+1)
n (x)

=
λk(x)

[
y ′

n(x) + sk(x)

λk(x)
yn(x)

]
λk−1(x)

[
y ′

n(x) + sk−1(x)

λk−1(x)
yn(x)

] . (8)

For sufficiently large k, if

sk(x)

λk(x)
= sk−1(x)

λk−1(x)
= α(x), (9)
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which is the ‘asymptotic’ aspect of the method, then, equation (8) is reduced to

d

dx
ln

[
y(k+1)

n (x)
] = λk(x)

λk−1(x)
, (10)

which yields

y(k+1)
n (x) = C1 exp

(∫
λk(x)

λk−1(x)
dx

)
= C1λk−1(x) exp

(∫
[α(x) + λ0(x)] dx

)
, (11)

where C1 is the integration constant. By inserting equation (11) into equation (6), the first-order
differential equation is obtained as

y ′
n(x) + α(x)yn(x) = C1 exp

(∫
[α(x) + λ0(x)] dx

)
. (12)

This first-order differential equation can easily be solved and the general solution of
equation (1) can be obtained as

yn(x) = exp

(
−

∫ x

α(x1) dx1

) [
C2 + C1

∫ x

exp

(∫ x1

[λ0(x2) + 2α(x2)] dx2

)
dx1

]
. (13)

For a given potential, the Dirac equation is converted to the form of equation (1). Then, s0(x)

and λ0(x) are determined and the sk(x) and λk(x) parameters are calculated by the recurrence
relations given in equation (7). The termination condition of the method in equation (9) can
be arranged as

δk(x) = λk(x)sk−1(x) − λk−1(x)sk(x) = 0, k = 1, 2, 3, . . . (14)

where k shows the iteration number. For the exactly solvable potentials, the energy eigenvalues
are obtained from the roots of equation (14) and the radial quantum number n is equal to the
iteration number k for this case. For nontrivial potentials that have no exact solutions, for a
specific n principal quantum number, we choose a suitable x0 point, determined generally as
the maximum value of the asymptotic wavefunction or the minimum value of the potential
[16–18] and the approximate energy eigenvalues are obtained by iteration from the roots of
equation (14) for sufficiently great values of k. We should point out that k is always greater
than n in these numerical solutions.

The general solution of equation (1) is given by equation (13). The first part of
equation (13) gives us polynomial solutions that are convergent and physical, whereas the
second part of equation (13) gives us non-physical solutions that are divergent. Although
equation (13) is the general solution of equation (1), we take the coefficient of the second part
(C1) as zero in order to find the square integrable solutions. Therefore, the corresponding
eigenfunctions can be derived from the following wavefunction generator for exactly solvable
potentials:

yn(x) = C2 exp

(
−

∫ x sn(x1)

λn(x1)
dx1

)
, (15)

where n represents the radial quantum number.

3. Exact analytical solution

3.1. Dirac equation

The stationary state Dirac wave equation [5, 10, 13, 14, 19] for a single particle with mass M
in a scalar S(�r) and a vector potential V (�r) can be given as in unit h̄ = c = 1:

[�α · �p + β(M + S(�r)) + V (�r)]ψ(�r) = Eψ(�r), (16)
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where �p and E are the momentum operator and the total relativistic energy of the system,
respectively. �α and β are 4 × 4 Dirac matrices, i.e,

�α =
(

0 �σi

�σi 0

)
, and β =

(
I 0
0 −I

)
, (17)

where I is the 2 × 2 unit matrix and �σi=x,y,z are 2 × 2 Pauli matrices:

σx =
(

0 1
1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0
0 −1

)
. (18)

The Dirac spinors may be written according to the upper (large) fnκ and lower (small) gnκ

components as follows:

ψnκ(�r) =
(

fnκ

gnκ

)
=

(
Fnκ(r)

r
Y �

jm(θ, φ)
iGnκ(r)

r
Y �̃

jm(θ, φ)

)
, (19)

where Y �
jm(θ, φ) and Y �̃

jm(θ, φ) are the spin and pseudospin spherical harmonics, n is the radial

quantum number and m is the projection of the angular momentum on the z axis. The Ĥ , L̂

and Ĵ operators do not create a complete set and they do not have the same Dirac spinors
since the orbital angular momentum L̂ cannot commute with the Dirac Hamiltonian. The
spin–orbit matrix operator K̂ is defined as K̂ = −β(�σ · �L + 1). The eigenvalues of K̂ are
κ = (j + 1/2), where κ = −(j + 1/2) < 0 is for the aligned spin j = l + 1/2 (s1/2, p3/2, etc)
and κ = (j + 1/2) > 0 is for the unaligned spin j = l − 1/2 (p1/2, d3/2, etc). For any single
particle, the Hamiltonian Ĥ can form a complete set with K̂, Ĵ 2 and Ĵz, i.e., (Ĥ , K̂, Ĵ 2, Ĵz).
By inserting equation (19) into equation (16), we can immediately obtain two coupled ordinary
differential equations for the radial parts of the Dirac eigenfunctions as follows:(

d

dr
+

κ

r

)
Fnκ(r) = [M + Enκ − V (r) + S(r)] Gnκ(r) (20)

and (
d

dr
− κ

r

)
Gnκ(r) = [M − Enκ + V (r) + S(r)] Fnκ(r). (21)

By eliminating Gnκ(r) in equation (20) and Fnκ(r) in equation (21), we immediately obtain
a second-order differential equation for the lower and upper components of the Dirac
wavefunction as follows:[

d2

dr2
− κ(κ − 1)

r2
− (M + Enκ − �(r))(M − Enκ + �(r))

−
d�
dr

(
d
dr

− κ
r

)
M − Enκ + �(r)

]
Gnκ(r) = 0 (22)

and[
d2

dr2
− κ(κ + 1)

r2
− (M + Enκ − �(r))(M − Enκ + �(r))

+
d�
dr

(
d
dr

+ κ
r

)
M + Enκ − �(r)

]
Fnκ(r) = 0, (23)

where �(r) = V (r) + S(r) and �(r) = V (r) − S(r).
It is known that the Dirac equation cannot be solved exactly for the exponential potential

such as the Morse one for κ �= 0 by using the standard methods. Therefore, an approximation
has to be made: the most widely used and convenient one is the Pekeris approximation. In the
next section, we introduce the Pekeris approximation.



The pseudospin symmetric solution of the Morse potential for any κ state 11123

3.2. The Pekeris approximation

The Pekeris approximation [20, 21] is based on the expansion of the centrifugal term in a series
of exponentials depending on internuclear distance, keeping terms up to the second order. It
should be pointed out, however, that this approximation is valid only for low vibrational
energy states. In the Pekeris approximation, by change of the coordinates x = (r − re)/re,
the centrifugal potential is expanded in a series around x = 0

Vκ(x) = κ(κ − 1)

r2
e

1

(1 + x)2
= γ (1 − 2x + 3x2 − 4x3 + · · ·), (24)

where γ = κ(κ−1)

r2
e

. By taking up to the second order degrees in this series and writing them in
terms of exponentials, we get

Ṽκ (x) = γ (D0 + D1 e−αx + D2 e−2αx). (25)

In order to determine the constants D0,D1 and D2, we also expand this potential in a series
of x:

Ṽκ (x) = γ

(
D0 + D1 + D2 − (D1 + 2D2)αx +

(
D1

2
+ 2D2

)
α2x2 · · ·

)
. (26)

By comparing the equal powers of equations (24) and (26), we obtain the constants D0,D1

and D2 as follows:

D0 = 1 − 3

α
+

3

α2
, D1 = 4

α
− 6

α2
, D2 = − 1

α
+

3

α2
. (27)

3.3. Exact pseudospin symmetry

In equation (22), we take �(r) as the Morse potential [22], defined as

VMorse(r) = D(e−2αx − 2e−αx), D > 0, α > 0 (28)

with x = (r − re)/re and α = are. Here, D and α denote the dissociation energy and the
Morse parameter, respectively. re is the equilibrium distance (bound length) between nuclei
and a is a parameter to control the width of the potential well.

In the case of exact pseudospin symmetry, d�(r)

dr
= 0. Therefore, the sum of the vector

and scalar potentials �(r) can be taken as a constant. If we define this constant as C,
equation (22) becomes[

d2

dr2
− κ(κ − 1)

r2
− (M + Enκ − �(r))(M − Enκ + C)

]
Gnκ(r) = 0, (29)

where κ = −�̃ for κ < 0 and κ = �̃ + 1 for κ > 0 and �(r) is the Morse potential. The energy
eigenvalues depend on n and �̃, i.e., Enκ = E(n, �̃(�̃ + 1)). The eigenstates with j = �̃ ± 1/2
are degenerate for �̃ �= 0. This case is commonly known as exact pseudospin symmetry [3, 13].
After inserting equations (25) and (28) into equation (29) and by using the following ansatz,

ν2 = r2
e D(M − Enκ + C), ω2 = r2

e

(
E2

nκ − M2 − CM − CEnκ

)
. (30)

we may easily obtain[
d2

dx2
− r2

e γ (D0 + D1 e−αx + D2 e−2αx) + ν2(e−2αx − 2 e−αx) + ω2

]
Gnκ(x) = 0. (31)

If we rewrite equation (31) by using a new variable of the form y = e−αx , and by using the
following ansatz

−ε2 = ω2 − r2
e γD0

α2
, β2

1 = −r2
e γD1 − 2ν2

α2
, β2

2 = r2
e γD2 − ν2

α2
, (32)
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we obtain
d2Gnκ(y)

dy2
+

1

y

dGnκ(y)

dy
+

[
− ε2

y2
+

β2
1

y
− β2

2

]
Gnκ(y) = 0. (33)

In order to solve this equation with the AIM for κ �= 0, we should transform this equation
to the form of equation (1). Moreover, the wavefunction has to be the boundary conditions,
i.e, Gnκ(0) ∼ yε for y → 0 and Gnκ(∞) ∼ e−β2y for y → ∞. Therefore, the reasonable
physical wavefunction we propose is as follows:

Gnκ(y) = yεe−β2yfnκ(y). (34)

If we insert this wavefunction into equation (33), we have the second-order homogeneous
linear differential equation in the following form:

d2fnκ(y)

dy2
=

(
2β2y − 2ε − 1

y

)
dfnκ(y)

dy
+

(
2εβ2 + β2 − β2

1

y

)
fnκ(y), (35)

which is now amenable to an AIM solution. By comparing this equation with equation (1), we
can write the λ0(y) and s0(y) values, and by means of equation (7), we may calculate λk(y)

and sk(y). This gives

λ0(y) =
(

2β2y − 2ε − 1

y

)
,

s0(y) =
(

2εβ2 + β2 − β2
1

y

)
,

λ1(y) = 4β2
2 − 3β2(2ε + 1) + β1

2

y
+

2ε(2ε + 3) + 2

y2
,

s1(y) = 2β2
2(2ε + 1) − 2β1

2β2

y
+

2β1
2(ε + 1) − 2β2(3ε + 1 + 2ε2)

y2
,

. . . etc.

(36)

Combining these results with the quantization condition given by equation (14) yields

s0λ1 − s1λ0 = 0 ⇒ ε0 = −1

2

β2 − β2
1

β2
,

s1λ2 − s2λ1 = 0 ⇒ ε1 = −1

2

3β2 − β2
1

β2
,

s2λ3 − s3λ2 = 0 ⇒ ε2 = −1

2

5β2 − β2
1

β2
,

. . . etc.

(37)

When the above expressions are generalized, the eigenvalues turn out as

εn = β2
1 − (2n + 1)β2

2β2
, n = 0, 1, 2, 3, . . . (38)

By using equations (30) and (32), we obtain the energy eigenvalues Enκ ,

2
√

γD0 − (Ẽnκ − C − 2M)Ẽnκ +
2DẼnκ + γD1√
γD2 − DẼnκ

+ (2n + 1)a = 0, (39)

where Ẽnκ = M + C − Enκ . In order to avoid getting an equation which has no solution for
the energy eigenvalues, we select√

γD0 − (Ẽnκ − C − 2M)Ẽnκ = −i
√

(Ẽnκ − C − 2M)Ẽnκ − γD0,√
γD2 − DẼnκ = i

√
DẼnκ − γD2.

(40)
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Table 1. The bound state energy eigenvalues En,κ of the Dirac particle in the rotational Morse
potential for several n and κ states with C = −10 fm−1 and C = −9.96 fm−1.

En,κ<0 En,κ<0 En−1,κ>0 En−1,κ>0

�̃ n, κ < 0 (�, j) (C = −10) (C = −9.96) n − 1, κ > 0 (� + 2, j + 1) (C = −10) (C = −9.96)

1 1, −1 (1s1/2) −0.006 4123 0.033 5874 0, 2 (0d3/2) −0.006 4123 0.033 5874
2 1, −2 (1p3/2) −0.015 5771 0.024 4201 0, 3 (0f5/2) −0.015 5771 0.024 4201
3 1, −3 (1d5/2) −0.024 3659 0.015 6261 0, 4 (0g7/2) −0.024 3659 0.015 6261
4 1, −4 (1f7/2) −0.030 5297 0.009 4547 0, 5 (0h9/2) −0.030 5297 0.009 4547
1 2, −1 (2s1/2) −0.007 0204 0.032 9795 1, 2 (1d3/2) −0.007 0204 0.032 9795
2 2, −2 (2p3/2) −0.019 0441 0.020 9547 1, 3 (1f5/2) −0.019 0441 0.020 9547
3 2, −3 (2d5/2) −0.033 7719 0.006 2238 1, 4 (1g7/2) −0.033 7719 0.006 2238
4 2, −4 (2f7/2) −0.049 2150 −0.009 2253 1, 5 (1h9/2) −0.049 2150 −0.009 2253

Otherwise, the energy eigenvalues have the complex values. Therefore, the energy eigenvalue
equation is obtained as(

2
√

(Ẽnκ − C − 2M)Ẽnκ − γD0 +
2DẼnκ + γD1√
DẼnκ − γD2

)2

+ (2n + 1)2a2 = 0, (41)

where Ẽnκ is M +C −Enκ . As a numerical example, we use the same parameters as in [11, 12]
in order to compare our results with theirs. The results obtained by using the following
parameters, D = 5.0 fm−1, re = 2.408 73 fm−1, a = 0.988 879 fm−1,M = 10.0 fm−1,

D0 = 0.269 28,D1 = 0.621 78,D2 = 0.108 93 and C = −10 fm−1, are shown in table 1.
The pseudospin partners are clearly seen in this table, i.e., the Dirac eigenstate 1s1/2 with
n = 1 and κ = −1 has a partner of 0d3/2 with n − 1 = 0 and κ = 2.

The analytical expression for the energy eigenvalue given by equation (41) and the
numerical results presented in table 1 are in excellent agreement with the results of [12].
However, the results of table 2 of [12] are misleading: the authors have presented in their
paper that in the case of C = 0, some negative bound state solutions can still exist, as shown
in table 2. However, our calculations show that there are no bound states for C � −9.95 fm−1

as the numerical values are presented in table 2 for C = −5 fm−1 and C = 0. The authors
of [12] have apparently made a simple mistake in their calculations for C = 0 presented in
table 2. On the other hand, [11] has stated that there are no bound state solutions of the exact
pseudospin symmetry Morse potential C > −10 fm−1. But, as we have presented in table 1
for C = −9.96 fm−1, there are negative bound state solutions and the author has also made a
sign error in the eigenvalue equation. Therefore, the numerical values presented in the paper
are not correct, as it is also pointed out in [12].

Hereafter, we would like to present how to find the corresponding eigenfunctions, fn(y),
for the pseudospin symmetry Morse potential. By using the wavefunction generator given by
equation (15), we obtain fn(y) as follows:

f0(y) = 1, (42)

f1(y) = (
2β2 − β2

1

) (
1 − 2β2y(

β12−3β2

β2
+ 1

))
, (43)

f2(y) = (
β2

1 − 4β2
)(

β2
1 − 3β2

) 1 − 4β2y( β2
1 −5β2

β2
+ 1

) +
4β2

2y2( β2
1 −5β2

β2
+ 1

)( β2
1 −5β2

β2
+ 2

)
 , (44)

. . . etc.
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Table 2. The same eigenvalues as in table 1 for C = 0 and C = −5 fm−1.

En,κ<0 En,κ<0 En−1,κ>0 En−1,κ>0

�̃ n, κ < 0 (�, j) (C = 0) (C = −5) n − 1, κ > 0 (� + 2, j + 1) (C = 0) (C = −5)

1 1, −1 (1s1/2) 9.993 5101 4.993 5463 0, 2 (0d3/2) 9.993 5101 4.993 5463
2 1, −2 (1p3/2) 9.983 8165 4.984 1020 0, 3 (0f5/2) 9.983 8165 4.984 1020
3 1, −3 (1d5/2) 9.973 7712 4.974 6641 0, 4 (0g7/2) 9.973 7712 4.974 6641
4 1, −4 (1f7/2) 9.965 6754 4.967 5409 0, 5 (0h9/2) 9.965 6754 4.967 5409
1 2, −1 (2s1/2) 9.992 9544 4.992 9662 1, 2 (1d3/2) 9.992 9544 4.992 9662
2 2, −2 (2p3/2) 9.980 7043 4.980 8218 1, 3 (1f5/2) 9.980 7043 4.980 8218
3 2, −3 (2d5/2) 9.965 2868 4.965 7281 1, 4 (1g7/2) 9.965 2868 4.965 7281
4 2, −4 (2f7/2) 9.948 4873 4.949 5727 1, 5 (1h9/2) 9.948 4873 4.949 5727

We can derive from the results given above the general formula for fn(y) as,

fn(y) = (−1)n

(
2n−1∏
k=n

(
β2

1 − (k + 1)β2
))

1F1(−n, 2εn + 1; 2β2y). (45)

Therefore, we write the total radial wavefunction as follows:

Gnκ(y) = (−1)n

(
2n−1∏
k=n

(
β2

1 − (k + 1)β2
))

yεn e−β2y
1F1(−n, 2εn + 1; 2β2y). (46)

When the hypergeometric function is written in terms of the Laguerre polynomials, we obtain

Gnκ(y) = Nyεne−β2yL2εn

n (2β2y) , (47)

where N is the normalization constant and can be obtained from
N2

∫ ∞
0 y2εn e−2β2y

[
L2εn

n (2β2y)
]2

dy = 1 as follows:

N = 1

n!
(2β2)

2εn+1
2

√
(n − 2εn)!

n!
. (48)

4. Conclusion

In this paper, we have presented the bound state solution of the Dirac equation for the
attractive scalar and repulsive vector Morse potential within the framework of the asymptotic
iteration method by applying the Pekeris approximation to the centrifugal-like term. We
have obtained the energy eigenvalues and the corresponding eigenfunctions for the exact
pseudospin symmetry case in the closed-form for any κ states. It may be seen that the (n, l, j)

and (n−1, l + 2, j + 1) states have the same energy eigenvalues as a result of exact pseudospin
symmetry, as shown in tables 1 and 2. Moreover, we have also pointed out minor mistakes of
previous works and have concluded that there are bound state solutions of the exact pseudospin
symmetry Morse potential for C � −9.96 fm−1, but that there are no bound state solutions of
this potential C > −9.96 fm−1 by using the same potential parameters.
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